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Design Documentation for 
the SINTRA Preprocessor 

1     Introduction 

The SINTRA database system is a multilevel trusted database management system 

based on the replicated architecture [FrM89, Kan94]. The replicated architecture ap- 

proach uses a physically distinct backend database management system for each security 

level. Each backend database contains information at a given security level and all data 

from lower security levels. The system security is assured by a trusted frontend which 

permits a user to access only the backend database system which matches his/her secu- 
rity level. 

The SINTRA database system consists of one trusted front end (TFE), several un- 

trusted backend database systems (UBD) and several User Interface Stations (UIS). 

The role of the TFE includes user authentication, directing user queries to the backend, 

maintaining data consistency among backends, etc. Each UBD can be any commercial 

off-the-shelf database system and each UIS can be any system supporting Unix, XI1 
and TCP/IP. 

1.1    The SINTRA Database System 

The SINTRA database system, which is currently being prototyped at the Naval Re- 

search Laboratory, uses the HFSI XTS-300 system as a trusted frontend and untrusted 

ORACLE DBMSs which are running on SUN4/300 as backend databases. The backend 

and frontend computers are connected through Ethernet. Figure 1 illustrates the SIN- 

TRA architecture where NI represents the network interface process (for more detailed 

diagram, see [Kan94, Fig3]). There are two components between the trusted frontend 

and an off-the-shelf database: (1) a global scheduler and (2) a query preprocessor. These 

two components perform the systems transaction management functions and assure the 

consistency and integrity of replicated data among different backend databases. Notice 

that the global scheduler has a portion resident in the trusted frontend and another 

portion in each (untrusted) backend. Each ORACLE DBMS has a local scheduler. 

Before the responsibilities of the global scheduler are discussed, we define two classes 
of transactions: 

Definition 1. A user transaction T; is a sequence of queries terminated by either 

a commit(ci) or an abort fa), i.e., Tt- = <qti, q,-2, ••-, q,-n, Q>. Each query, qtj, is an 

atomic operation and is one of retrieve,  insert,  replace, or delete. 

Once a user transaction is successfully committed and that transaction contains an 

Manuscript approved September 22, 1994. 
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Figure 1: The SINTRA Architecture. 

update query, then the corresponding update projtctinn is spawned and propagated to 

upper levels to modify the replicas located at higher security level backends. 

Definition 2. An update projection U;, which corresponds to a transaction T,-, is a 

sequence of update queries, e.g., U,- = <q;2) q;s, •••• <|.n. <",> obtained from transaction 

Tj by simply removing all retrieve queries. 

The global scheduler performs the following tasks: 

• Receive queries from the preprocessor and the global scheduler at lower security 

levels and send them to the appropriate backend database. 

When a transaction is committed, send the corresponding update projection to 



higher security level backends so that the consistency among replicas is maintained. 

A transaction model and a global scheduler for the SINTRA database system have been 

presented in [KFC93, KaP93]. 

1.2    The Role of The Query Preprocessor 

The SINTRA query preprocessor plays an important role in maintaining data consis- 

tency among different backend databases, preserving data integrity, and bridging the se- 

mantic gap between conventional and multilevel-secure databases. The SINTRA query 

preprocessor modifies user queries based on the replicated architecture data model, the 

replicated architecture relational algebra, and the semantics of the replicated architec- 

ture update operations described in [CKF94]. 

The following are responsibilities of the SINTRA query preprocessor: 

1. If a secret-level user were allowed to modify the copy of a confidential data item in 

the secret-level backend database, then inconsistent database states between the 

secret and confidential backend databases could be created (assuming no write- 

down is allowed). To prevent such inconsistencies, the query preprocessor must 

inspect and modify each user's update queries so that the backend database system 

only modifies the secret-level data items (i.e., whose tuple level classification is 

the same as the user's login level) - it is also assumed that no write-up is allowed. 

Notice that this behavior enforces integrity and consistency among the backend 

databases. Confidentiality is enforced by preventing write-down and by limiting 

each user's queries to the backend corresponding to his login levels. 

2. There is also some data that can be disclosed but cannot be modified by the user 

- it can be modified only by the system. For instance, the classification of a tuple 

cannot be modified by the user. It is the responsibility of the query preprocessor 

to guarantee the integrity of security label data. 

3. SINTRA, which is a multilevel relational database system, uses conventional re- 

lational database systems as backend databases. These conventional relational 

databases use SQL, which is based on the conventional (single-level) relational 

algebra and the semantics of conventional update operations [U1182]. On the other 

hand, the whole multilevel relational database is based on a multilevel relational 

algebra and the semantics of multilevel relational update operations which were 

presented in [CKF94]. Therefore, before SINTRA user queries, which are posed to 



the MLS database, are submitted to the backend databases, they must be trans- 

lated into other queries, which are based on the conventional relational algebra 

and the semantics of conventional update operations. 

4. Since there are semantic differences between user queries and the queries passed to 

the backend database, a single user query may be translated into several queries for 

the backend database. In such cases, the query preprocessor has to guarantee the 

atomicity of each user query. For example, if a single update query is translated 

into three queries for the backend database, then this sequence of three queries 

has to be executed as a single atomic action i.e., it is submitted to the backend as 

a single subtransaction. 

5. In the SINTRA system, the user view of a relation (table) may not be the same 

as the relation stored in the backend database. The query preprocessor has to 

modify user queries so that implementation detail can be hidden from the user. 

To perform the above responsibilities, the SINTRA query preprocessor at the appropri- 

ate backend intercepts, inspects and modifies user queries before they are submitted to 

the ORACLE DBMS. 

Note that only the original user transactions have to be modified by the preprocessor; 

the queries in update projections bypass the preprocessor (because those have been 

modified already at a lower level). 

2     Overview of Code Structure 

Figure 2 illustrates the internal process structure of the SINTRA query preprocessor. 

Once a user query is submitted to the SINTRA system, it will be passed to the query 

preprocessor (i.e., processl). The output of the final process of the query preprocessor 

will be passed to the ORACLE DBMS. The function of each process is as follows: 

1. YACC+4- and LEX++ are used to parse user queries and convert them to an 

internal representation (IR). Parse trees are used as the internal representation. 

2. This process is responsible for carrying out responsibilities (1) and (2) in section 

1.2. Each user query is inspected so that only legal queries are passed to the next 

step. For example, if a high-user query tries to delete the replicas of low level 

tuples located at the high backend, the validation routine will reject that query. 

3. This process is responsible for carrying out responsibilities (3) and (4) in section 

1.2. Parse trees are modified based on a multilevel relational algebra and the 

semantics of multilevel relational update operations. 
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Figure 2: Internal Process Structure of Query Preprocessor. 

4. Query optimization is performed based on intimate knowledge of query preproces- 

sor implementation. A detailed description of the SINTRA query optimizer will 
appear in [Kang]. 

5. The process (5) converts the internal representation (parse tree) to SQL and sub- 
mits it to ORACLE. 

The individual processes are separated so that each process can be developed, tested, 
and upgraded or replaced more easily. 

All the SINTRA preprocessor codes are written in C++, an object-oriented pro- 

gramming language. We do not consider the design methodology of the SINTRA pre- 

processor to be objected-oriented, but the dynamic binding feature of C++ provided us 

the flexibility to navigate the parse tree easily without explicit testing of classes. 

3    Organization of Relations 

There are two straight forward ways to organize relations at the backend database in the 

SINTRA architecture. We discuss each method and its advantages and disadvantages. 

We do not consider the SeaView style decomposition [Den87] because that, method 

requires many join operations to reconstruct a multilevel relation. 



Option A 

A relation is organized as the user views it. For example, relation R will be organized 

as: 

R(A\, C\, Ai, C2, ■ ■ ., An, Cn, TL) 

where TL is the tuple classification level, and it can range from system low to system 

high. 

One advantage of option A is that there is no need to create views and perform 

unions as in option B. Therefore, it is more efficient in some cases. 

Option B 

A relation is decomposed as several base relations - one base relation for each security 

class. For example, relation R in the high backend database may be divided into R# 

and RL. Relations R# and RL will be organized as: 

RH(A\, C\, A2,C2, ■ ■ ., An, Cn) 

RL(A\, C\, A2,C2, ■ ■ ., An, Cn) 

There are several advantages of option B over option A. 

• It provides better concurrency. Some off-the-shelf databases prohibit simultaneous 

update operations on the same relation. The organization of option B enables 

simultaneous update operations on relation R - high users can update R# while 

update projections from the low level can modify R^,. 

• The join operation is much easier under option B when the security classes of a 

system do not form a completely ordered set. In this case, tuples from incompa- 

rable security classes should not participate in the join, and option B simplifies 

their segregation. 

• It reduces work in some cases. For instance, a high-level user query delete from 

R where cond may be translated into delete from R# where cond rather than 

delete from R where cond and TL =   'H' by the query preprocessor. 

Even though the organization of option B may complicate the query preprocessor in 

some cases, we prefer option B in the SINTRA prototype because 

1. we do not want a user transaction and an update projection to interfere with 



each other, and under option B, these would operate on separate base relations 
[KFC93]. 

2. We also believe that the data organization of option B provides more opportunity 
for query optimization and parallelization. Consider a H-user query delete from 
R where R. a = S. d and S. TL = ' H'. The output of the restructured and opti- 
mized query will be delete from RH where R#.a = SJJ.d. The general query 
optimization and parallelization issues are beyond the scope of this document but 
will be addressed in [Kang]. 

4    Implementation Specifications 

Based on the structure of relations and the replicated data model [CKF94], the SINTRA 
query preprocessor translates user queries to queries that are ready to be submitted to 
ORACLE. The SINTRA preprocessor enforces the following rules: 

1. T > S > C is the SINTRA security structure. 

2. Character '#' is a preprocessor reserved character unless it appears in literals (e.g., 
'JACK#'). 

3. User can use attribute names which contain '#' character only in where clause. 

4. User cannot use table names which contain '#' character. 

5. Before each user query is translated, savepoint is inserted. 

6. There are global variables SL (user's session level) and Role which will be pre-set 
by the system. 

In the following sections, we give examples that show how each type of query is trans- 
lated. The following database schemata are used in our examples. We also call the user 
whose session level is X an X-user. 

R(A, At, B, Bt, C, Ot, TtL) 

S(D, Dt, E, Et, F, Ft, TtL) 

T(G, Gt, H, Ht, I, It, TtL) 

where At is the classification of an attribute A and TtL is a tuple-level classification. 



4.1     Create Tables 

In the SINTRA system, only the database administrator (DBA) can issue the create 

table command. We recommend that a DBA issues create table at the lowest level; 

it will be propagated to higher security levels. However, unlike other update opera- 

tions, the create command will be propagated unmodified, and it will pass through the 

preprocessor at each level. 

create table R  ( 

A char(10), 

A# char(l), 

B number(5), 

B# char(l), 

.   .   .   ) 

is an illegal query because A# and B# are used by the user. However, 

create table R  ( 

A char(10), 

B number(5), 

C char  (9)   ); 

is legal, and the preprocessor will produce the following statements: 

create table R#C ( 

A char(10), 

A# char(l), 

B number(5), 

B# char(l), 

C char (9), 

C# char(l)  ); 

create view R  (A,  A#,  B,  B#,  C,  C#,  T#L) 

as select A,  A#,  B,  B#,  C,  C#,   'C 

from R#C; 

When the create table command is propagated to the 'S' level, it will generate the 

following statements. 



create table R#C  ( 

• •   •   ) 

create table R#S  ( 

• .   .   ) 

create view R  (A, A#,  B,  B#,  C,  C#, T#L) 

as select A,  A#,  B,  B#,  C,  C#,   'S' 

from R#S 

UNION 

select A,  A#,  B,  B#,  C,  C#,   >C 

from R#C; 

When the create table command is propagated to the T-backend, it will generate three 

relations, R#C, R#S, and R#T, as well as a view that combines these three relations. In 

this document, we refer R#C, R#S, and R#T as base relations. 

Since all relations in SINTRA are owned by the DBA2, the DBA should grant access 

for updating and retrieving data to proper users. 

4.2    Complex Conditions 

Each query has a qualification clause (where conditions) that specifies which tuples of 

the relation are to be retrieved or updated. We distinguish two kinds of qualification 

clauses: simple and complex. A complex qualification requires examination of multiple 

relations in order to determine affected set of tuples, whereas a simple qualification can 

be evaluated by examining only one relation. Each qualification clause is a Boolean 

combination of atomic conditions. Each atomic condition may specify a selection or a 

join operation, and each condition is connected by connectives. 

Each atomic condition, in turn, may be either a simple or complex predicate.   A 

complex predicate that contains more than one relation will be interpreted as follows: 

R.a @ S.d will be translated as (R.a @ S.d and R.a# = S.d#) 

where 0 = {=,>,<,>, < }. R.a != S.d will be translated as (R.a != S.d or R.a# != 

S.d#). 

2In this prototype, the DBA owns all relations because the consistency of database schema through- 
out different security levels, the uniqueness of relation name, and granting access to replicas of relations 
can be easily controlled by the DBA. 



4.3    Select 

select statement is relatively easy to translate.   The basic ideas that we use in our 

translation are: 

• Unsophisticated user's view of a multilevel relation is R(A\, A2, ■ ■ ., An, TL) and 

the information on data classification will always be provided. 

• A user does not need to know the basic structure of the SINTRA relations.  All 

translation from the SINTRA created view to base relations should be automatic. 

select A,  A#,  B,  B#,  T#L 

from R#T 

is an illegal user statement because '#' character appears in from statement. Also A#, 

B#, and T#L cannot be specified by the user except where clause. 

However, the following user statement is legal: 

select A,  B,  C 

from R 

where T#L =   'T'; 

and will yield the following statement from the preprocessor: 

SELECT A,  A#,  B,  B#,  C,  C#,  R.T#L 

FROM SINTRA.R 

WHERE T#L =   'T'; 

A user query: 

select * 

from R 

where R.a > R.b; 

will produce the following query: 

SELECT A,  A#,   B,  B#,   C,   C#,  R.T#L 

FROM SINTRA.R 

WHERE SINTRA.R.A >  SINTRA.R.B; 

10 



To obtain column (attribute) information, the SINTRA preprocessor issues the following 
query: 

select column_name 

from COLS 

where table_name =  'K'; 

The following user query 

select r.* from R,  S 

where R.a = S.d; 

will produce 

SELECT R.A,  R.A#,  R.B,  R.B#,  R.C,  R.C#,  R.T#L 

FROM SINTRA.R,  SINTRA.S 

WHERE  (SINTRA.R.A = SINTRA.S.A AND SINTRA.R.A# =  SINTRA.S.D#); 

4.4    Insert 

We distinguish two types of insert queries: simple and complex. The difference between 

simple and complex insert queries are: the values to be inserted are specified via the 

VALUE argument in the simple insert query, whereas the values to be inserted in a 

complex insert query are specified via a subquery statement. 

Simple Insert 

insert into R  (A,  A#,  B,  B#) 

is an illegal user statement because '#' character appears.   However, the following T- 

user's query is legal: 

insert into R  (A,  B) 

values  ('Iowa',   'Battle ship'); 

and the preprocessor will produce the following statement: 

11 



insert into SINTRA.R#T (A,  A#,  B,  B#,  C,   C#) 

values  ('Iowa',   'T',   'Battle ship',   'T',  null,   'T'); 

Note that if there are more attributes in the relation than what user specified, then 

NULL and session level will be padded. 

Complex Insert 

An S-user's query: 

insert into R  (A,  B,  C) 

select S.d,  S.e,  S.f 

from S 

where S.d > 5; 

will produce 

insert into SINTRA.RSS  (A,  A#,  B,   B#,  C,  C#) 

select S.d,  S.d#,  S.e,  S.e#,  S.f,  S.f# 

from SINTRA.S 

where SINTRA.S.d >  5; 

Note that the elimination of duplicate tuples is the responsibility of the underlying 

DBMS. 

4.5    Update 

The treatment of the update statement is little more complex due to polyinstantiation. 

The following query: 

update R 

set A =   'Iowa',  A# =   'T 

where   .   .   . 

is an illegal query because '#' character appears in set clause. 

However, the following T-user's query: 

12 



update R 

set A =   'Iowa#' 

where C =   'Battle ship'; 

is a legal query. To perform the polyinstantiation, the SINTRA preprocessor has to 

know the key attributes of the relation which will be updated. The preprocessor will 

search the primary key of relation R from the ORACLE metadata using the following 

command: 

select COLUMN_NAME from user_ind_columns, user_constraints 

where user_ind_columns.table_name =  'R'  and 

user_constraints.table_name =  'R'  and 

and user_constraints.constraint_type =  'P'   and 

user_ind_columns.INDEX_NAME = user.constraints.constraint_name; 

If the above query returns empty (i.e., the primary key was not defined) then all attribute 

names will be the primary key. 

Once the primary keys are found then it will produce the following sequence of 

queries: 

create table temp as 

(select * from SINTRA.R#S ;  polyinstantiated tuples 

where SINTRA.R#S.C =   'Battle ship' 

union 

select * from SINTRA.R#C 

where SINTRA.R#C.C = 'Battle ship' ); 

update temp 

set A = 'Iowa#\ A# = 'T' 

where C = 'Battle ship'; 

delete from SINTRA.R#T where <list of real keys> in 

(select <list of real keys> from temp); 

update SINTRA.R#T 

set A = 'Iowa#\ A# = 'T' 

where SINTRA.R#T.C = 'Battle ship'; 

13 



insert into SINTRA.R#T 

(select * from temp); 

drop table temp; 

where a list of real keys includes user defined key and all classification attributes. 

Note that if the default configuration of ORACLE (which does not produce seri- 

alizable schedules) is used, the base relations which form the temp relation have to 

be locked explicitly to force the conflict among update queries. The temporary relation 

name should be carefully chosen so that no other update query can create the same tem- 

porary relation. The SINTRA preprocessor actually uses t#empn as temporary relation 

names where n is a unique sequence number generated by ORACLE. 

4.6 Delete 

The following T-user's query: 

delete from R 

where R.B < 300 and B# =   ;S'; 

is a legal user statement because '#' character appears in where clause. The preprocessor 

will produce the following statement: 

delete from SINTRA.R#T 

where SINTRA.R#T.B < 300 and SINTRA.R#T.B# =   'S'; 

However, the following is an illegal statement: 

delete from R 

where R#T.B < 300 and B# =   'S'; 

because users should not know that there is a base relation whose name is R#T. 

4.7 Grant 

The grant command will not be propagated to higher levels.  Hence, if one wants to 

grant access to objects, he/she has to do it separately at each level. 

For example, S-user's command: 

14 



grant all  on R to public; 

will be translated as 

grant all on SINTRA.R#C to public; 

grant all on SINTRA.R#S to public; 

grant all on R to public; 

We decided not to propagate the grant statement because: 

• the user who is granted access to certain relations at one security level may not have 

access rights to the replica of the same relation at higher security level backends, 

and 

• since all update projections are owned by the DBA it is not a problem to execute 

update projections at higher security levels. 

4.8    Commit and Rollback 

The commit and rollback commands will have their usual meaning. If a user trans- 

action is successfully committed and the transaction contains update queries, then a 

corresponding update projection will be spawned and propagate to higher security lev- 

els. 

5    Internal Representation 

Every SQL statement is represented internally as a parse tree. Non-leaf nodes represent 

non-terminal grammar symbols and leaf nodes represent terminal symbols. Every node 

within the parse tree has a corresponding type and the type is represented in C++ as 

class definition. There is a base type defined named parse_nd which provides most of the 

methods needed to support the semantics required by each node within the parse tree. 

Parse_nd is inherited by the other types. All the methods defined in parse_nd are defined 

as virtual methods to allow the exploitation of the dynamic binding capabilities available 

in C++. Through the use of dynamic binding, in most cases, the required restructuring 

can be performed on a node without checking the type of the node or the type of the 

node's parent. If the semantics required by a node are supported by a method in class 

parse_nd then that method is executed via inheritance, otherwise, dynamic binding is 

15 



parse_nd 

Figure 3: Typical Inheritance within the Preprocessor 

used to access the appropriate method in the derived class to perform the required 

actions. 

Figure 3 shows the inheritance relationship between a parse_nd and an update state- 

ment node. This type of inheritance (one level) is the only type used throughout the 

preprocessor to represent the parse tree. 

5.1      Preprocessor Algorithm 

1. After receiving a SQL statement from standard input, parse it using lex++ and 

yacc++. Yacc+-1- builds a parse tree using user defined types similar to the one 

defined in Figure  3. 

2. Starting with the root of the parse tree returned by step 1, visit each node 

validating its syntax against SINTRA's supported subset of SQL and its semantics 

against SINTRA's security policy. This step is referred to as the validation phase. 

If the validation step fails, further parsing of the statement is aborted and the 

parser returns to step 1. For example, delete from R where A# = 'C by an 

S-user will fail at this stage because the SIXTH A security policy does not allow 

an 5-user to insert C-data. 

3. Starting with the root of the parse tree returned by step 1, visit each node, 

performing the required restructuring to the parse tree in order to convert the 

SQL query into the equivalent multi-level SQL query. Depending upon the query, 

different types of restructuring are performed. SQL statements such as CRE- 

ATE, GRANT and UPDATE require creating several parse trees, while other 

SQL statements only require the removal of some nodes and/or node augmenta- 

16 



tion. Regardless of the type of query, the parse tree representing that query is 

first fully expanded to ensure no loss of information, then reduced when required. 

Reduction is required when tuple level classification is expressed in the query and 

the table referred to by the tuple level classification is a view that is going to be 

converted to a base relation. The tuple level classification is dropped, because base 

relations do not have tuple level classification attributes. Tuple level classification 

attributes are associated with views. This step is referred to as the restructuring 

phase. 

4. Starting with the root of the first restructured parse tree within the forest returned 

by step 3 and continuing until each tree in the forest has been visited, convert 

the parse tree(s) into an SQL statement. At this point the original query entered 

by the user has been translated into its equivalent multi-level version. The multi- 

level version is sent to standard output. This step is referred to as the output 

generation phase. 

5. All parse trees created in the above steps are deleted and the preprocessor returns 

to step   1. 

5.2    Advantages of using C++ 

We used C++ instead of a language that didn't support the object oriented methodology, 

because through the use of polymorphism, dynamic binding and inheritance, we were 

able to write code that is modular and extensible. For example, every SQL statement 

must be restructured as it is being parsed. Using a conventional language such as C, 

one might implement the restructuring phase as follows: 

restructure (stmt_type) { 

switch (stmt.type) { 

case UPDATE: 

/* perform update restructuring */ 

case SELECT: 

/* perform select restructuring */ 

case DELETE: 

/* perform delete restructuring */ 
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The disadvantage of this approach is that the restructure function must know about 
every SQL statement and each time a new statement is added, the restructure function 
must be updated. Using C++ one could write the above as, 

class statement       :   public parse_node { 
protected: 

union { 
class upd_srch_st_nd        *updsst; 
class del_srch_st_nd        *dsrchst; 
class sel_st_nd *selst; 

}; 
public: 

void restructure(); 

}; 

/* restructure method for class statement */ 

void statement::restructure() 

{ 

((parse_node*)updsst)->restructure(vslev); 

} 

and define a restructuring method for each of the classes upd_srch_st_nd, del_srch_st_nd, 
and sel_st_nd. When the system was compiled, the polymorphic features of C++ would 
enable updsst to reference any of the types listed in the union above and dynamic 
binding would select the appropriate restructure method at run-time. If the generic 
restructure method defined in class parse_node was sufficient, then that method would 
get called via inheritance. When the time arrived to add a new SQL statement, only 
the interface to class statement would need updating. The restructure method defined 
for statement would not need changing and could be kept in a library. At run-time, it 
would automatically know about the new statements. 
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5.3    Communication with the Global Scheduler 

The preprocessor is invoked by the global scheduler through the use of the C++ type 
parser_starter. See the Design Documentation for the SINTRA Global Scheduler 

[KaP93] document for more information about the parser_starter type. Once the 
preprocessor has been started, it reads from standard input until a semi-colon is received, 
all the characters read before the semicolon are passed through the algorithm described 
in section 5.1. This process continues until the EXIT string is received, at which point 
the preprocessor terminates. 

6    Summary 

In this document, we have described functions and implementation details of the pre- 
processor of the SINTRA prototype. In conjunction with the companion documents, 
[Kan94] and [CKF94], this document should, we hope, provide valuable insights to the 
designers of the next generation preprocessors. 
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